Coverage for src / local_deep_research / search_system.py: 79%
98 statements
« prev ^ index » next coverage.py v7.12.0, created at 2026-01-11 00:51 +0000
« prev ^ index » next coverage.py v7.12.0, created at 2026-01-11 00:51 +0000
1# src/local_deep_research/search_system/search_system.py
2from typing import Callable, Dict
4from langchain_core.language_models import BaseChatModel
5from loguru import logger
7from .advanced_search_system.findings.repository import FindingsRepository
8from .advanced_search_system.questions.standard_question import (
9 StandardQuestionGenerator,
10)
11from .advanced_search_system.strategies.followup.enhanced_contextual_followup import (
12 EnhancedContextualFollowUpStrategy,
13)
15# StandardSearchStrategy imported lazily to avoid database access during module import
16from .citation_handler import CitationHandler
17from .web_search_engines.search_engine_base import BaseSearchEngine
20class AdvancedSearchSystem:
21 """
22 Advanced search system that coordinates different search strategies.
23 """
25 def __init__(
26 self,
27 llm: BaseChatModel,
28 search: BaseSearchEngine,
29 strategy_name: str = "source-based", # Default to comprehensive research strategy
30 include_text_content: bool = True,
31 use_cross_engine_filter: bool = True,
32 max_iterations: int | None = None,
33 questions_per_iteration: int | None = None,
34 use_atomic_facts: bool = False,
35 username: str | None = None,
36 settings_snapshot: dict | None = None,
37 research_id: str | None = None,
38 research_context: dict | None = None,
39 programmatic_mode: bool = False,
40 search_original_query: bool = True,
41 ):
42 """Initialize the advanced search system.
44 Args:
45 llm: LLM to use for the search strategy.
46 search: Search engine to use for queries.
47 strategy_name: The name of the search strategy to use. Options:
48 - "standard": Basic iterative search strategy
49 - "iterdrag": Iterative Dense Retrieval Augmented Generation
50 - "source-based": Focuses on finding and extracting from sources
51 - "parallel": Runs multiple search queries in parallel
52 - "rapid": Quick single-pass search
53 - "recursive": Recursive decomposition of complex queries
54 - "iterative": Loop-based reasoning with persistent knowledge
55 - "adaptive": Adaptive step-by-step reasoning
56 - "smart": Automatically chooses best strategy based on query
57 - "browsecomp": Optimized for BrowseComp-style puzzle queries
58 - "evidence": Enhanced evidence-based verification with improved candidate discovery
59 - "constrained": Progressive constraint-based search that narrows candidates step by step
60 - "parallel-constrained": Parallel constraint-based search with combined constraint execution
61 - "early-stop-constrained": Parallel constraint search with immediate evaluation and early stopping at 99% confidence
62 - "dual-confidence": Dual confidence scoring with positive/negative/uncertainty
63 - "dual-confidence-with-rejection": Dual confidence with early rejection of poor candidates
64 - "concurrent-dual-confidence": Concurrent search & evaluation with progressive constraint relaxation
65 - "modular": Modular architecture using constraint checking and candidate exploration modules
66 - "browsecomp-entity": Entity-focused search for BrowseComp questions with knowledge graph building
67 - "iterative-refinement": Iteratively refines results using LLM evaluation and follow-up queries
68 include_text_content: If False, only includes metadata and links in search results
69 use_cross_engine_filter: Whether to filter results across search
70 engines.
71 max_iterations: The maximum number of search iterations to
72 perform. Will be read from the settings if not specified.
73 questions_per_iteration: The number of questions to include in
74 each iteration. Will be read from the settings if not specified.
75 use_atomic_facts: Whether to use atomic fact decomposition for
76 complex queries when using the source-based strategy.
77 programmatic_mode: If True, disables database operations and metrics tracking.
78 This is useful for running searches without database dependencies.
79 search_original_query: Whether to include the original query in the first iteration
80 of search. Set to False for news searches to avoid sending long subscription
81 prompts to search engines.
83 """
84 # Store research context for strategies
85 self.research_id = research_id
86 self.research_context = research_context
87 self.username = username
89 # Store required components
90 self.model = llm
91 self.search = search
93 # Store settings snapshot
94 self.settings_snapshot = settings_snapshot or {}
96 # Store programmatic mode
97 self.programmatic_mode = programmatic_mode
99 # Store search original query setting
100 self.search_original_query = search_original_query
102 # Log if running in programmatic mode
103 if self.programmatic_mode:
104 logger.warning(
105 "Running in programmatic mode - database operations and metrics tracking disabled. "
106 "Rate limiting, search metrics, and persistence features will not be available."
107 )
109 # Get iterations setting
110 self.max_iterations = max_iterations
111 if self.max_iterations is None:
112 # Use settings from snapshot
113 if "search.iterations" in self.settings_snapshot: 113 ↛ 120line 113 didn't jump to line 120 because the condition on line 113 was always true
114 value = self.settings_snapshot["search.iterations"]
115 if isinstance(value, dict) and "value" in value: 115 ↛ 118line 115 didn't jump to line 118 because the condition on line 115 was always true
116 self.max_iterations = value["value"]
117 else:
118 self.max_iterations = value
119 else:
120 self.max_iterations = 1 # Default
122 self.questions_per_iteration = questions_per_iteration
123 if self.questions_per_iteration is None:
124 # Use settings from snapshot
125 if "search.questions_per_iteration" in self.settings_snapshot: 125 ↛ 132line 125 didn't jump to line 132 because the condition on line 125 was always true
126 value = self.settings_snapshot["search.questions_per_iteration"]
127 if isinstance(value, dict) and "value" in value: 127 ↛ 130line 127 didn't jump to line 130 because the condition on line 127 was always true
128 self.questions_per_iteration = value["value"]
129 else:
130 self.questions_per_iteration = value
131 else:
132 self.questions_per_iteration = 3 # Default
134 # Log the strategy name that's being used
135 logger.info(
136 f"Initializing AdvancedSearchSystem with strategy_name='{strategy_name}'"
137 )
139 # Initialize components
140 self.citation_handler = CitationHandler(
141 self.model, settings_snapshot=self.settings_snapshot
142 )
143 self.question_generator = StandardQuestionGenerator(self.model)
144 self.findings_repository = FindingsRepository(self.model)
145 # For backward compatibility
146 self.questions_by_iteration = list()
147 self.progress_callback = lambda _1, _2, _3: None
148 self.all_links_of_system = list()
150 # Initialize strategy using factory
151 from .search_system_factory import create_strategy
153 # Special handling for follow-up strategy which needs different logic
154 if strategy_name.lower() in [ 154 ↛ 160line 154 didn't jump to line 160 because the condition on line 154 was never true
155 "enhanced-contextual-followup",
156 "enhanced_contextual_followup",
157 "contextual-followup",
158 "contextual_followup",
159 ]:
160 logger.info("Creating EnhancedContextualFollowUpStrategy instance")
161 # Get delegate strategy from research context
162 # This should be the user's preferred strategy from settings
163 delegate_strategy_name = (
164 self.research_context.get("delegate_strategy", "source-based")
165 if self.research_context
166 else "source-based"
167 )
169 delegate = create_strategy(
170 strategy_name=delegate_strategy_name,
171 model=self.model,
172 search=self.search,
173 all_links_of_system=[],
174 settings_snapshot=self.settings_snapshot,
175 knowledge_accumulation_mode=True,
176 search_original_query=self.search_original_query,
177 )
179 # Create the contextual follow-up strategy with the delegate
180 self.strategy = EnhancedContextualFollowUpStrategy(
181 model=self.model,
182 search=self.search,
183 delegate_strategy=delegate,
184 all_links_of_system=self.all_links_of_system,
185 settings_snapshot=self.settings_snapshot,
186 research_context=self.research_context,
187 )
188 else:
189 # Use factory for all other strategies
190 logger.info(f"Creating {strategy_name} strategy using factory")
191 self.strategy = create_strategy(
192 strategy_name=strategy_name,
193 model=self.model,
194 search=self.search,
195 all_links_of_system=self.all_links_of_system,
196 settings_snapshot=self.settings_snapshot,
197 # Pass strategy-specific parameters
198 include_text_content=include_text_content,
199 use_cross_engine_filter=use_cross_engine_filter,
200 use_atomic_facts=use_atomic_facts,
201 max_iterations=self.max_iterations,
202 questions_per_iteration=self.questions_per_iteration,
203 # Special parameters for iterative strategy
204 search_iterations_per_round=self.max_iterations or 1,
205 questions_per_search=self.questions_per_iteration,
206 # Special parameters for adaptive strategy
207 max_steps=self.max_iterations,
208 source_questions_per_iteration=self.questions_per_iteration,
209 # Special parameters for evidence and constrained strategies
210 max_search_iterations=self.max_iterations,
211 # Special parameters for focused iteration
212 use_browsecomp_optimization=True,
213 # Pass search original query parameter
214 search_original_query=self.search_original_query,
215 )
217 # Log the actual strategy class
218 logger.info(f"Created strategy of type: {type(self.strategy).__name__}")
220 # Configure the strategy with our attributes
221 if hasattr(self, "progress_callback") and self.progress_callback: 221 ↛ exitline 221 didn't return from function '__init__' because the condition on line 221 was always true
222 self.strategy.set_progress_callback(self.progress_callback)
224 def _progress_callback(
225 self, message: str, progress: int, metadata: dict
226 ) -> None:
227 """Handle progress updates from the strategy."""
228 logger.info(f"Progress: {progress}% - {message}")
229 if hasattr(self, "progress_callback"):
230 self.progress_callback(message, progress, metadata)
232 def set_progress_callback(
233 self, callback: Callable[[str, int, dict], None]
234 ) -> None:
235 """Set a callback function to receive progress updates."""
236 self.progress_callback = callback
237 if hasattr(self, "strategy"): 237 ↛ exitline 237 didn't return from function 'set_progress_callback' because the condition on line 237 was always true
238 self.strategy.set_progress_callback(callback)
240 def analyze_topic(
241 self,
242 query: str,
243 is_user_search: bool = True,
244 is_news_search: bool = False,
245 user_id: str = "anonymous",
246 search_id: str = None,
247 **kwargs,
248 ) -> Dict:
249 """Analyze a topic using the current strategy.
251 Args:
252 query: The research query to analyze
253 is_user_search: Whether this is a user-initiated search
254 is_news_search: Whether this is a news search
255 user_id: The user ID for tracking
256 search_id: The search ID (auto-generated if not provided)
257 **kwargs: Additional arguments
258 """
260 # Generate search ID if not provided
261 if search_id is None: 261 ↛ 267line 261 didn't jump to line 267 because the condition on line 261 was always true
262 import uuid
264 search_id = str(uuid.uuid4())
266 # Perform the search
267 result = self._perform_search(
268 query, search_id, is_user_search, is_news_search, user_id
269 )
271 return result
273 def _perform_search(
274 self,
275 query: str,
276 search_id: str,
277 is_user_search: bool,
278 is_news_search: bool,
279 user_id: str,
280 ) -> Dict:
281 """Perform the actual search."""
282 # Send progress message with LLM info
283 # Get settings from snapshot if available
284 llm_provider = "unknown"
285 llm_model = "unknown"
286 search_tool = "unknown"
288 if self.settings_snapshot: 288 ↛ 311line 288 didn't jump to line 311 because the condition on line 288 was always true
289 # Extract values from settings snapshot
290 provider_setting = self.settings_snapshot.get("llm.provider", {})
291 llm_provider = (
292 provider_setting.get("value", "unknown")
293 if isinstance(provider_setting, dict)
294 else provider_setting
295 )
297 model_setting = self.settings_snapshot.get("llm.model", {})
298 llm_model = (
299 model_setting.get("value", "unknown")
300 if isinstance(model_setting, dict)
301 else model_setting
302 )
304 tool_setting = self.settings_snapshot.get("search.tool", {})
305 search_tool = (
306 tool_setting.get("value", "searxng")
307 if isinstance(tool_setting, dict)
308 else tool_setting
309 )
311 self.progress_callback(
312 f"Using {llm_provider} model: {llm_model}",
313 1, # Low percentage to show this as an early step
314 {
315 "phase": "setup",
316 "llm_info": {
317 "name": llm_model,
318 "provider": llm_provider,
319 },
320 },
321 )
322 # Send progress message with search strategy info
323 self.progress_callback(
324 f"Using search tool: {search_tool}",
325 1.5, # Between setup and processing steps
326 {
327 "phase": "setup",
328 "search_info": {
329 "tool": search_tool,
330 },
331 },
332 )
334 # Use the strategy to analyze the topic
335 result = self.strategy.analyze_topic(query)
337 # Update our attributes for backward compatibility
339 self.questions_by_iteration = (
340 self.strategy.questions_by_iteration.copy()
341 )
342 # Send progress message with search info
344 # Only extend if they're different objects in memory to avoid duplication
345 # This check prevents doubling the list when they reference the same object
346 # Fix for issue #301: "too many links in detailed report mode"
347 if id(self.all_links_of_system) != id( 347 ↛ 350line 347 didn't jump to line 350 because the condition on line 347 was never true
348 self.strategy.all_links_of_system
349 ):
350 self.all_links_of_system.extend(self.strategy.all_links_of_system)
352 # Include the search system instance for access to citations
353 result["search_system"] = self
354 result["all_links_of_system"] = self.all_links_of_system
356 # Ensure query is included in the result
357 if "query" not in result: 357 ↛ 359line 357 didn't jump to line 359 because the condition on line 357 was always true
358 result["query"] = query
359 result["questions_by_iteration"] = self.questions_by_iteration
361 # Call news callback
362 try:
363 from .news.core.search_integration import NewsSearchCallback
365 callback = NewsSearchCallback()
366 context = {
367 "is_user_search": is_user_search,
368 "is_news_search": is_news_search,
369 "user_id": user_id,
370 "search_id": search_id,
371 }
372 callback(query, result, context)
373 except Exception:
374 logger.exception("Error in news callback")
376 return result